Antisymmetric Tensor Products of Absolutely p-Summing Operators

Stefan Geiss
Mathematische Fakultät der Friedrich Schiller Universität Jena, UHH 17.OG, Jena, D 0-6900, Germany
Communicated by Paul L. Butzer

Received October 15, 1990

Abstract

We consider antisymmetric tensor products of absolutely p-summing operators. In connection with this second moments of determinants of random matrices appear. These second moments are closely related to approximation properties of the absolutely 2 -summing operators and can be used to characterize some classes of infinite-dimensional Banach spaces. Finite-dimensional results are also obtained by this approach. © 1992 Academic Press, Inc.

The starting point of the present paper is the result of Holub [4], which says that the injective tensor product of two absolutely p-summing operators S and T is again absolutely p-summing whereas $\pi_{p}\left(S \otimes_{\varepsilon} T\right) \leqslant$ $\pi_{p}(S) \pi_{p}(T)$.

We consider antisymmetric injective tensor products of an absolutely p-summing operator and prove norm estimates that are better than those appearing in the general case covered by Holub; see Theorems 1.1 and 1.2. In connection with this, second moments of determinants of random matrices appear and suggest a modified definition of the Grothendieck numbers.

For a linear and continuous operator S between Banach spaces X and Y these modified Grothendieck numbers are defined by

$$
\Gamma_{n}(S ; \mu):=\sup \left\{\int_{B_{Y^{\prime}}} \cdots \int_{B_{Y^{\prime}}}\left|\operatorname{det}\left(\left\langle S x_{i}, b_{j}\right\rangle\right)\right|^{2} d \mu\left(b_{1}\right) \cdots d \mu\left(b_{n}\right)\right\}^{1 / 2 n}
$$

where the supremum is taken over all normalized elements $x_{1}, \ldots, x_{n} \in X$ and where μ is a normalized regular Borel measure on the unit ball of Y^{\prime} equipped with the $\sigma\left(Y^{\prime}, Y\right)$-topology.

Some basic properties and examples of these quantities can be found in Section 2. In Section 3 we see that the modified Grothendieck numbers of S are closely related to the approximation numbers of the composition
$J S$, where $J: Y \rightarrow L_{2}\left(B_{Y^{\prime}} ; \mu\right)$ is the canonical embedding. Using this fact we characterize some classes of Banach spaces in Theorems 3.2-3.4. In the last section we exploit finite-dimensional estimates of the modified Grothendieck numbers to reprove a result of Pełczynski and Szarek [9] concerning cubical volume ratios of convex and symmetric bodies in \mathbb{R}^{n}. With the same method we sharpen the relation between volume ratios of convex and symmetric bodies using ellipsoids of minimal and maximal volume and their analytical counterpart, the Grothendieck numbers; see Corollaries 4.3 and 4.4.

Preliminaries

If nothing is stated to the contrary, all Banach spaces are assumed to be real or complex. The closed unit ball of a Banach space X is denoted by B_{X}, the dual of X by $X^{\prime} . I_{X}$ is the identity-operator. The notations of special sequence and function spaces are adopted from [6]. The space of all linear and continuous operators from a Banach space X into a Banach space Y is denoted by $\mathscr{L}(X, Y)$ and equipped with the norm

$$
\|S\|:=\sup \left\{\|S x\|: x \in B_{X}\right\}
$$

If K is a compact Hausdorff space then $W(K)$ denotes the set of all normalized regular Borel measures on K.
Let $1 \leqslant p<\infty$. An operator $S \in \mathscr{L}(X, Y)$ is absolutely p-summing if there exist $\mu \in W\left(B_{X^{\prime}}\right)$ ($B_{X^{\prime}}$ is equipped with the $\sigma\left(X^{\prime}, X\right)$-topology) and a constant $c \geqslant 0$ such that

$$
\begin{equation*}
\|S x\| \leqslant c\left(\int_{B_{x}}|\langle x, a\rangle|^{p} d \mu(a)\right)^{1 / p} \quad \text { for all } \quad x \in X \tag{*}
\end{equation*}
$$

The space $\Pi_{p}(X, Y)$ of the absolutely p-summing operators from X into Y is endowed with the norm $\pi_{p}(S):=\inf c$, where the infimum is taken over all $c \geqslant 0$ such that (*) holds for some measure μ.

Since the infimum is attained (see $[10,(17.3 .2)]$) we may say that S is dominated by μ if $(*)$ is satisfied with $c=\pi_{p}(S)$.
An operator $S \in \mathscr{L}(X, Y)$ belongs to the class Γ_{2}^{*} if there exists a factorization $S=S_{2} S_{1}$ through a Hilbert space H with $S_{1} \in \Pi_{2}(X, H)$ and $S_{2}^{\prime} \in \Pi_{2}\left(Y^{\prime}, H^{\prime}\right)$. As norm we set

$$
\gamma_{2}^{*}(S):=\inf \left\{\pi_{2}\left(S_{1}\right) \pi_{2}\left(S_{2}^{\prime}\right)\right\},
$$

where the infimum is taken over all possible representations. According to [10, (17.4.3)] the infimum is attained again. So we analogously say that S
is dominated by $\mu \in W\left(B_{X^{\prime}}\right)$ and $v \in W\left(B_{Y^{\prime \prime}}\right)$ if $S=S_{2} S_{1}$ and $\gamma_{2}^{*}(S)=$ $\pi_{2}\left(S_{1}\right) \pi_{2}\left(S_{2}^{\prime}\right)$, where S_{1} and S_{2} are dominated by μ and v, respectively.

Finally, we call an operator $S \in \mathscr{L}(X, Y)$ nuclear if there exist sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset X^{\prime}$ and $\left\{y_{n}\right\}_{n=1}^{\infty} \subset Y$ such that

$$
S x=\sum_{n=1}^{\infty}\left\langle x, a_{n}\right\rangle y_{n} \quad \text { for all } \quad x \in X
$$

and $\sum_{n=1}^{\infty}\left\|a_{n}\right\|\left\|y_{n}\right\|<\infty$. The set of all nuclear operators S from X into Y is denoted by $N(X, Y)$ and is a Banach space under

$$
v(S):=\inf \left\{\sum_{n=1}^{\infty}\left\|a_{n}\right\|\left\|y_{n}\right\|\right\}
$$

More information about the above operator classes can be found in [10] or [11].

1. Antisymmetric Tensor Products of Absolutely p-Summing Operators

Let X be a Banach space and S_{n} be the group of all permutations of the set $\{1, \ldots, n\}$. For X we define the nth outer product as

$$
\Lambda^{n} X:=\operatorname{span}\left\{x_{1} \wedge \cdots \wedge x_{n}:=\sum_{S_{n}} \operatorname{sgn} \sigma x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}\right\} \subseteq \bigotimes^{n} X
$$

and denote the closure in the injective tensor product $\otimes_{\varepsilon}^{n} X$ by $\Lambda_{\varepsilon}^{n} X$. In the special situation in which $X=H$ is a Hilbert space we use

$$
\begin{gathered}
(s, t):=\sum_{i, j} \operatorname{det}\left(\left(f_{k i}, g_{l j}\right)\right)_{k, l=1}^{n} \\
\left(s=\sum_{i} f_{1 i} \wedge \cdots \wedge f_{n i} \in A^{n} H, t=\sum_{j} g_{1 j} \wedge \cdots \wedge g_{n j} \in A^{n} H\right)
\end{gathered}
$$

as scalar product on $\Lambda^{n} H$ and form the corresponding closure $\Lambda_{2}^{n} H$. The usual norm of an element $s \in \Lambda_{\varepsilon}^{n} X$ is denoted by $\varepsilon(s)$ (see below). In $\Lambda_{2}^{n} H$ we take $\tau(s):=(s, s)^{1 / 2}$.

The elements of $A_{\varepsilon}^{n} X$ can be naturally considered as antisymmetric functionals on $X^{\prime} \times \cdots \times X^{\prime}$ in the following way. To each $s \in \Lambda^{n} X$ with $s=\sum_{i} x_{1 i} \wedge \cdots \wedge x_{n i}$ we assign a continuous functional

$$
\tilde{s} \in \mathbb{L}\left(X^{\prime}, \ldots, X^{\prime}\right):=\left\{t: X^{\prime} \times \cdots \times X^{\prime} \rightarrow \mathbb{R}, \mathbb{C}: n \text {-linear and continuous }\right\}
$$

by

$$
\tilde{s}\left(a_{1}, \ldots, a_{n}\right):=\sum_{i} \operatorname{det}\left(\left\langle x_{k i}, a_{l}\right\rangle\right)_{k, l=1}^{n} .
$$

\tilde{s} does not depend on the special representation of s and

$$
\|\tilde{s}\|=\sup \left\{\left|\tilde{s}\left(a_{1}, \ldots, a_{n}\right)\right|: a_{i} \in B_{X^{\prime}}\right\}=\varepsilon(s)
$$

Hence $\Lambda_{\varepsilon}^{n} X$ is an isometric subspace of $\mathbb{L}\left(X^{\prime}, \ldots, X^{\prime}\right)$ and

$$
\|s\|_{L_{p}\left(\mu^{n}\right)}:=\left(\int_{B_{x^{\prime}}} \cdots \int_{B_{x^{\prime}}}\left|s\left(a_{1}, \ldots, a_{n}\right)\right|^{p} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right)^{1 / p}
$$

is justified for $\mu \in W\left(B_{X^{\prime}}\right), s \in \Lambda_{\varepsilon}^{n} X$, and $1 \leqslant p<\infty$.
Furthermore, assuming K to be a compact Hausdorff space we recall $\otimes_{\varepsilon}^{n} C(K)=C(K \times \cdots \times K)$ and deduce

$$
\Lambda_{\varepsilon}^{n} C(K)=C^{a}(K \times \cdots \times K)
$$

where $C^{a}(K \times \cdots \times K)$ is the subspace of $C(K \times \cdots \times K)$ consisting of all antisymmetric and continuous functions on $K \times \cdots \times K$.

Finally, we introduce the outer e-product $\Lambda_{\varepsilon}^{n} S: \Lambda_{\varepsilon}^{n} X \rightarrow \Lambda_{\varepsilon}^{n} Y$ of an operator $S \in \mathscr{L}(X, Y)$ by $\left(\Lambda_{\varepsilon}^{n} S\right)\left(x_{1} \wedge \cdots \wedge x_{n}\right):=S x_{1} \wedge \cdots \wedge S x_{n}$. The outer 2-product $A_{2}^{n} S$ of an operator S acting between Hilbert spaces is defined analogously.

Now we can formulate the main results.

Theorem 1.1. Let $2 \leqslant p<\infty$ and $S \in \Pi_{p}(X, Y)$ be dominated by the measure μ. Then

$$
\varepsilon\left(\left(\Lambda_{\varepsilon}^{n} S\right) s\right) \leqslant n!^{-1 / p} \pi_{p}(S)^{n}\|s\|_{L_{p}\left(\mu^{n}\right)} \quad \text { for all } \quad s \in \Lambda_{\varepsilon}^{n} X
$$

Consequently, $\pi_{p}\left(\Lambda_{\varepsilon}^{n} S\right) \leqslant n!^{-1 / p} \pi_{p}(S)^{n}$.

Theorem 1.2. Let H be a Hilbert space and let $S \in \Pi_{2}(X, H)$ be dominated by the measure μ. Then $\Lambda^{n} S: \Lambda_{\varepsilon}^{n} X \rightarrow \Lambda_{2}^{n} H$ (induced in the canonical way) is absolutely 2 -summing with

$$
\tau\left(\left(\Lambda^{n} S\right) s\right) \leqslant n!^{-1 / 2} \pi_{2}(S)^{n}\|s\|_{L_{2}\left(\mu^{n}\right)} \quad \text { for all } \quad s \in \Lambda_{\varepsilon}^{n} X
$$

Consequently, $\pi_{2}\left(\Lambda^{n} S\right) \leqslant n!^{-1 / 2} \pi_{2}(S)^{n}$.
To prove the above results we start with a formula which is of

Cauchy-Binet type and describe $\Lambda_{2}^{n} L_{2}(\Omega, \mu)$ in the case when $(\Omega, \mathscr{F}, \mu)$ is a σ-finite measure space. For this purpose the linear map

$$
\Psi: \Lambda^{n} L_{2}(\Omega, \mu) \rightarrow L_{2}(\Omega \times \cdots \times \Omega, \mu \times \cdots \times \mu)
$$

is defined on the representatives by

$$
\Psi\left(f_{1} \wedge \cdots \wedge f_{n}\right):=\left(\left(\omega_{1}, \ldots, \omega_{n}\right) \rightarrow \operatorname{det}\left(f_{i}\left(\omega_{j}\right)\right)_{i, j=1}^{n}\right)
$$

Furthermore, for $1 \leqslant p<\infty$ we denote by $L_{p}^{a}(\Omega \times \cdots \times \Omega, \mu \times \cdots \times \mu)$ the closed subspace of $L_{p}(\Omega \times \cdots \times \Omega, \mu \times \cdots \times \mu)$ defined by
$\left\{f \in L_{p}\right.$: there exists an antisymmetric $f^{\prime} \in f$ defined everywhere $\}$.
Lemma 1.3. Let $(\Omega, \mathscr{F}, \mu)$ be a σ-finite measure space. Then

$$
\Lambda_{2}^{n} L_{2}(\Omega, \mu)=L_{2}^{a}(\Omega \times \cdots \times \Omega, \mu \times \cdots \times \mu),
$$

where for all $s, t \in A^{n} L_{2}$

$$
(s, t)_{\Lambda_{2}^{n} L_{2}}=n!^{-1} \int_{\Omega} \cdots \int_{\Omega} \Psi(s)\left(\omega_{i}\right) \overline{\Psi(t)\left(\omega_{i}\right)} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) .
$$

Proof. Let $s, t \in \Lambda^{n} L_{2}(\Omega, \mu)$ be given by $s=\Sigma_{i} f_{1 i} \wedge \cdots \wedge f_{n i}$ and $t=\sum_{j} g_{1 j} \wedge \cdots \wedge g_{n j}$. Then

$$
\begin{aligned}
(s, t)= & \sum_{i, j} \operatorname{det}\left(f_{k i}, g_{l j}\right)_{k, t=1}^{n} \\
= & \sum_{i, j} \operatorname{det}\left(\int_{\Omega} f_{k i} \overline{g_{l j}} d \mu\right)_{k, l} \\
= & \sum_{i, j} \sum_{S_{n}} \operatorname{sgn} \sigma \int \cdots \int f_{1 i}\left(\omega_{1}\right) \cdots f_{n i}\left(\omega_{n}\right) \\
& \times \overline{g_{\sigma(1) j}\left(\omega_{1}\right) \cdots g_{\sigma(n) j}\left(\omega_{n}\right)} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) \\
= & \sum_{i, j} \int \cdots \int f_{1 i}\left(\omega_{1}\right) \cdots f_{n i}\left(\omega_{n}\right) \\
& \times \overline{\operatorname{det}\left(g_{k j}\left(\omega_{l}\right)\right)_{k, l}} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) \\
= & \sum_{i, j} n!^{-1} \int \cdots \int \operatorname{det}\left(f_{k i}\left(\omega_{l}\right)\right)_{k, l} \\
& \times \overline{\operatorname{det}\left(g_{k j}\left(\omega_{l}\right)\right)_{k, l}} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) \\
= & n!^{-1} \int \cdots \int \Psi_{s} \overline{\Psi_{t}} d \mu \cdots d \mu .
\end{aligned}
$$

Hence $\Psi: \Lambda^{n} L_{2}(\Omega) \rightarrow L_{2}^{a} \subseteq L_{2}(\Omega \times \cdots \times \Omega)$ is an isometric embedding (with the factor $n!^{-1 / 2}$). To show that the extension $\tilde{\Psi}: A_{2}^{n} L_{2} \rightarrow L_{2}^{a}$ is a surjection we approximate an element $f \in L_{2}^{a}$ by step-functions f_{k} in the L_{2}-norm. It is clear that we can assume

$$
f_{k}=\sum_{i} \lambda_{i} \chi_{A_{l i}^{k} \times \cdots \times A_{n i}^{k}} \quad\left(\lambda_{i} \in \mathbb{R}, \mathbb{C}, A_{l i}^{k} \in \mathscr{F}\right)
$$

Considering the operator alt: $L_{2}(\Omega \times \cdots \times \Omega) \rightarrow L_{2}(\Omega \times \cdots \times \Omega)$ defined on the representatives by $\operatorname{alt}(f)=n!^{-1} \sum_{s_{n}} \operatorname{sgn} \sigma f_{\sigma} \quad\left(f_{\sigma}\left(\omega_{1}, \ldots, \omega_{n}\right):=\right.$ $f\left(\omega_{\sigma(1)}, \ldots, \omega_{\sigma(n)}\right)$) we obtain $\|$ alt $\| \leqslant 1$ and

$$
\operatorname{alt}\left(f_{k}\right) \xrightarrow[k]{ } \operatorname{alt}(f)=f
$$

in the L_{2}-norm. Since $\operatorname{alt}\left(f_{k}\right) \in \Psi\left(\Lambda^{n} L_{2}\right)$ we have $f \in \widetilde{\Psi}\left(\Lambda_{2}^{n} L_{2}\right)$.

Lemma 1.4. Let $2 \leqslant p<\infty, K$ be a compact Hausdorff space and μ a regular measure. Then the map $\Phi: C^{a}(K \times \cdots \times K) \rightarrow \Lambda_{\varepsilon}^{n} C(K)$ with

$$
\Phi\left(\left(\omega_{1}, \ldots, \omega_{n}\right) \rightarrow \operatorname{det}\left(f_{i}\left(\omega_{j}\right)\right)_{i, j=1}^{n}\right)=f_{1} \wedge \cdots \wedge f_{n}
$$

can be uniquely extended to a linear and continuous operator

$$
\tilde{\Phi}: L_{p}^{a}(K \times \cdots \times K, \mu \times \cdots \times \mu) \rightarrow \Lambda_{\varepsilon}^{n} L_{p}(K, \mu)
$$

Moreover $\|\tilde{\Phi}\| \leqslant n!^{-1 / p}$.
Proof. First we mention that the inclusions

$$
A^{n} C(K) \subseteq C^{a}(K \times \cdots \times K) \subseteq L_{p}^{a}(K \times \cdots \times K, \mu \cdots \times \mu)
$$

are dense with respect to the L_{p}-norm. Let $1=1 / p+1 / q$. Considering $s=\sum_{i} f_{1 i} \wedge \cdots \wedge f_{n i} \in \Lambda^{n} C(K)$ we obtain

$$
\begin{aligned}
\|\Phi s\|_{A_{\varepsilon}^{n} L_{p}} & =\sup \left\{\left|\sum_{i} \operatorname{det}\left(\left\langle f_{k i}, g_{l}\right\rangle\right)_{k, l}\right|:\left\|g_{l}\right\|_{q} \leqslant 1\right\} \\
& =\sup _{g_{l}}\left\{n!^{-1}\left|\int \cdots \int s\left(\omega_{1}, \ldots, \omega_{n}\right) \operatorname{det}\left(g_{l}\left(\omega_{k}\right)\right) d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right)\right|\right\} \\
& \leqslant\left\{n!^{-1}\|s\|_{p}\right\} \sup _{g_{l}}\left\{\int \cdots \int\left|\operatorname{det}\left(g_{l}\left(\omega_{k}\right)\right)\right|^{q} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right)\right\}^{1 / 4}
\end{aligned}
$$

from Lemma 1.3.

It remains to estimate the second factor from above by $n!^{1 / q}$. If $q=2$ is taken Lemma 1.3 implies

$$
\begin{gathered}
\left(\int \cdots \int\left|\operatorname{det}\left(g_{l}\left(\omega_{k}\right)\right)\right|^{2} d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right)\right)^{1 / 2} \\
=n!^{1 / 2}\left|\operatorname{det}\left(\left(g_{i}, g_{j}\right)\right)\right|^{1 / 2} \leqslant n!^{1 / 2}
\end{gathered}
$$

On the other hand, taking $q=1$ we use

$$
\begin{aligned}
& \int \cdots \int\left|\operatorname{det}\left(g_{l}\left(\omega_{k}\right)\right)\right| d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) \\
& \quad \leqslant \sum_{S_{n}} \int \cdots \int\left|g_{1}\left(\omega_{\sigma(1)}\right) \cdots g_{n}\left(\omega_{\sigma(n)}\right)\right| d \mu\left(\omega_{1}\right) \cdots d \mu\left(\omega_{n}\right) \leqslant n!
\end{aligned}
$$

To treat the remaining case $1<q<2$ we consider the operator

$$
M_{q}: L_{q}(K) \times \cdots \times L_{q}(K) \rightarrow L_{q}(K \times \cdots \times K)
$$

defined (on the representatives) by

$$
M_{q}\left(g_{1}, \ldots, g_{n}\right):=\left(\left(\omega_{1}, \ldots, \omega_{n}\right) \rightarrow \operatorname{det}\left(g_{l}\left(\omega_{k}\right)\right)_{k, l=1}^{n}\right)
$$

Now, for $1 / q=\theta+(1-\theta) / 2$ complex interpolation yields

$$
\left\|M_{q}\right\| \leqslant\left\|M_{1}\right\|^{\theta}\left\|M_{2}\right\|^{1-\theta} \leqslant n!^{\theta} n!^{(1-\theta) / 2}=n!^{1 / q} .
$$

Now we are in a position to prove Theorems 1.1 and 1.2
Proof of Theorem 1.1. Since S is dominated by μ there exist subspaces $X_{0} \subseteq C(K), X_{p} \subseteq L_{p}(K, \mu)\left(K:=B_{X^{\prime}}\right)$ and an operator $B \in \mathscr{L}\left(X_{p}, Y\right)$ with $\|B\| \leqslant \pi_{p}(S)$ such that

where A is defined by $A x:=\langle x\rangle,$,$J is the embedding of X_{0}$ into $C(K)$
and J_{p} is the restriction of the embedding \tilde{J}_{p}. The injectivity of the ε-product implies the diagram

where \widetilde{J}_{p}^{n} is the canonical embedding of C^{a} into L_{p}^{a} and $\widetilde{\Phi}_{n}$ is the map from Lemma 1.4. We see

$$
\begin{aligned}
\pi_{p}\left(\Lambda_{\varepsilon}^{n} S\right) & \leqslant \pi_{p}\left(\Lambda_{\varepsilon}^{n} J_{p}\right)\left\|\Lambda_{\varepsilon}^{n} B\right\| \leqslant \pi_{p}\left(\Lambda_{\varepsilon}^{n} \widetilde{J}_{p}\right)\|B\|^{n} \\
& \leqslant\left\|\widetilde{\Phi}_{n}\right\| \pi_{p}\left(\widetilde{J}_{p}^{n}\right)\|B\|^{n} \leqslant n!^{-1 / p} \pi_{p}(S)^{n} .
\end{aligned}
$$

Furthermore, let $s \in \Lambda_{\varepsilon}^{n} X$. Then

$$
\begin{aligned}
\varepsilon\left(\left(\Lambda_{\varepsilon}^{n} S\right) s\right) & \leqslant\left\|\Lambda_{\varepsilon}^{n} B\right\| \varepsilon\left(\left(\Lambda_{\varepsilon}^{n} J_{p} A\right) s\right) \leqslant\left\|\Lambda_{\varepsilon}^{n} B\right\| \varepsilon\left(\left(\Lambda_{\varepsilon}^{n} \tilde{J}_{p} J A\right) s\right) \\
& \leqslant\left\|\Lambda_{\varepsilon}^{n} B\right\| \varepsilon\left(\widetilde{\Phi}_{n} \widetilde{J}_{p}^{n}\left(\Lambda_{\varepsilon}^{n} J A\right) s\right) \leqslant n!^{-1 / p} \pi_{p}(S)^{n}\|s\|_{L_{p}\left(\mu^{n}\right)}
\end{aligned}
$$

Proof of Theorem 1.2. Again setting $K=B_{X^{\prime}}$ we can write the operator S as $S=B J A$, where $A \in \mathscr{L}(X, C(K))$ and $J \in \mathscr{L}\left(C(K), L_{2}(K, \mu)\right)$ are the canonical embeddings and $B \in \mathscr{L}\left(L_{2}(K, \mu), H\right)$ satisfies $\|B\| \leqslant \pi_{2}(S)$. We obtain

where $\widetilde{\Psi}_{n}$ is taken from Lemma 1.3 with $\left\|\widetilde{\Psi}_{n}\right\|=n!^{-1 / 2}$. As in the proof of Theorem 1.1 it follows that $\pi_{2}\left(\Lambda^{n} S\right) \leqslant n!^{-1 / 2} \pi_{2}(S)^{n}$ and

$$
\tau\left(\left(\Lambda^{n} S\right) s\right) \leqslant n!^{-1 / 2} \pi_{2}(S)^{n}\|s\|_{L_{2}\left(\mu^{n}\right)} \quad \text { for all } \quad s \in \Lambda_{\varepsilon}^{n} X
$$

To give a first corollary of Theorem 1.1 we define for $S: X \rightarrow Y \in \Pi_{2}$ and $T: Y \rightarrow X \in \Pi_{2}$ the determinant of $I+T S$ as

$$
\operatorname{det}(I+T S):=1+\sum_{n=1}^{\infty} \operatorname{tr}\left(\Lambda_{\varepsilon}^{n} T S\right)
$$

where tr is the unique continuous trace on the operator ideal Π_{2}^{2} (see $[11$, (4.2.6)]).

Now we can improve [11, (4.7.17)] in the case $r=1$.

Corollary 1.5. Let $S \in \Pi_{2}(X, Y)$ and $T \in \Pi_{2}(Y, X)$. Then

$$
|\operatorname{det}(I+T S)| \leqslant \exp \left(\pi_{2}(T) \pi_{2}(S)\right)
$$

Proof. Using [11, (4.2.6)] and Theorem 1.1 we see

$$
\begin{aligned}
|\operatorname{det}(I+T S)| & \leqslant 1+\sum_{n=1}^{\infty}\left|\operatorname{tr}\left(\Lambda_{\varepsilon}^{n} T S\right)\right| \\
& \leqslant 1+\sum_{n=1}^{\infty} \pi_{2}\left(A_{\varepsilon}^{n} T\right) \pi_{2}\left(\Lambda_{\varepsilon}^{n} S\right) \\
& \leqslant 1+\sum_{n=1}^{\infty} n!^{-1} \pi_{2}(T)^{n} \pi_{2}(S)^{n}
\end{aligned}
$$

2. Modified Grothendieck Numbers

According to [2] the usual Grothendieck numbers of an operator $S \in \mathscr{L}(X, Y)$ are defined as

$$
\begin{aligned}
\Gamma_{n}(S) & :=\sup \left\{\left|\operatorname{det}\left(\left\langle S x_{i}, b_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{1 / n}: x_{i} \in B_{X}, b_{j} \in B_{Y^{\prime}}\right\} \\
& =\sup \left\{\varepsilon\left(S x_{1} \wedge \cdots \wedge S x_{n}\right)^{1 / n}: x_{i} \in B_{X}\right\}
\end{aligned}
$$

whereas $\Gamma_{n}(X):=\Gamma_{n}\left(I_{X}\right)$.
Note that $\Gamma_{n}(X)$ measures the distance of the n-dimensional subspaces of
X to the Hilbert space by approximating the unit ball (of such a subspace) with the help of ellipsoids of maximal and minimal volume (see [3] and Corollary 4.4 of this paper).

Theorems 1.1 and 1.2 give rise to the following modification.
Let $S \in \mathscr{L}(X, Y)$ and $\mu \in W\left(B_{Y^{\prime}}\right)$. Then

$$
\Gamma_{n}(S ; \mu):=\sup \left\{\int_{B_{Y}} \cdots \int_{B_{Y^{\prime}}}\left|\operatorname{det}\left(\left\langle S x_{i}, b_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(b_{1}\right) \cdots d \mu\left(b_{n}\right)\right\}^{1 / 2 n},
$$

where the supremum is taken over all $x_{i} \in B_{X}$. Again we use

$$
\Gamma_{n}(X ; \mu):=\Gamma_{n}\left(I_{X} ; \mu\right)
$$

In this section we present some basic properties and examples of these modified quantities "for fixed n," whereas in the next section we relate their asymptotic behaviour for " $n \rightarrow \infty$ " to geometrical properties of the underlying Banach spaces.

For fixed n the usual and modified Grothendieck numbers satisfy

$$
\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} \Gamma_{n}(S) \leqslant \sup \left\{\Gamma_{n}(S ; \mu): \mu \in W\left(B_{Y^{\prime}}\right)\right\} \leqslant \Gamma_{n}(S)
$$

The right-hand inequality is clear. To see the left-hand one let $x_{1}, \ldots, x_{n} \in B_{X}$ and $b_{1}, \ldots, b_{n} \in B_{Y^{\prime}}$ be arbitrary. Defining $\mu:=$ $1 / n \sum_{j=1}^{n} \delta_{b_{j}} \in W\left(B_{Y^{\prime}}\right)$, where δ_{b} is the Dirac measure at $b \in Y^{\prime}$, we obtain

$$
\begin{aligned}
\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} & \left|\operatorname{det}\left(\left\langle S x_{i}, b_{j}\right\rangle\right)\right|^{1 / n} \\
& =\left(\int_{B_{Y}} \cdots \int_{B_{Y^{\prime}}}\left|\operatorname{det}\left(\left\langle S x_{i}, c_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(c_{1}\right) \cdots d \mu\left(c_{n}\right)\right)^{1 / 2 n} \\
& \leqslant \Gamma_{n}(S ; \mu)
\end{aligned}
$$

Taking the supremum over x_{i} and b_{j} we arrive at the desired result.
The following observations give more precise information about the interplay between the different Grothendieck numbers.

Lemma 2.1. Let $S \in \mathscr{L}(X, Y), \mu \in W\left(B_{Y^{\prime}}\right)$, and $J: Y \rightarrow L_{2}\left(B_{Y^{\prime}} ; \mu\right)$ be the canonical embedding. Then

$$
\Gamma_{n}(J S)=n!^{-1 / 2 n} \Gamma_{n}(S ; \mu)
$$

Proof. Applying Lemma 1.3 we obtain

$$
\begin{aligned}
& \Gamma_{n}(J S) \\
&=\sup \left\{\left|\left(J S x_{1} \wedge \cdots \wedge J S x_{n}, b_{1} \wedge \cdots \wedge b_{n}\right)_{A_{2}^{n} L_{2}}\right|^{1 / n}: x_{i} \in B_{X}, b_{j} \in B_{L_{2}}\right\} \\
&=\sup \left\{\left|\left(J S x_{1} \wedge \cdots \wedge J S x_{n}, J S x_{1} \wedge \cdots \wedge J S x_{n}\right)_{A_{2}^{n} L_{2}}\right|^{1 / 2 n}: x_{i} \in B_{X}\right\} \\
&=n!^{-1 / 2 n} \sup _{x_{i}}\left\{\int_{B_{Y}} \cdots \int_{B_{Y}}\left|\operatorname{det}\left(\left\langle S x_{i}, b_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(b_{1}\right) \cdots d \mu\left(b_{n}\right)\right\}^{1 / 2 n} \\
&=n!^{-1 / 2 n} \Gamma_{n}(S ; \mu) .
\end{aligned}
$$

In the case $S=I_{X}$ we will use a "two sided version" of Lemma 2.1. For this purpose we define the covariance operator $T_{\mu} \in \mathscr{L}\left(X, X^{\prime}\right)$ for a measure $\mu \in W\left(B_{X^{\prime}}\right)$ by

$$
\left\langle x, T_{\mu} y\right\rangle:=\int_{B_{X^{\prime}}}\langle x, a\rangle\langle y, a\rangle d \mu(a) .
$$

Lemma 2.2. Let $\mu \in W\left(B_{X^{\prime}}\right)$. Then

$$
\Gamma_{n}\left(T_{\mu}\right)=n!^{-1 / n} \Gamma_{n}(X ; \mu)^{2} .
$$

Proof. By local reflexivity and again by Lemma 1.3 we derive

$$
\begin{aligned}
\Gamma_{n}(& \left.T_{\mu}\right) \\
& =\sup \left\{\left|\operatorname{det}\left(\left\langle x_{i}, T_{\mu} y_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{1 / n}: x_{i}, y_{j} \in B_{X}\right\} \\
& =\sup \left\{\left|\left(x_{1} \wedge \cdots \wedge x_{n}, \bar{y}_{1} \wedge \cdots \wedge \bar{y}_{n}\right)_{A_{2}^{n} L_{2}\left(B_{\left.X^{\prime} ; \mu\right)}\right)}\right|^{1 / n}: x_{i}, y_{j} \in B_{X}\right\} \\
& =\sup \left\{\mid\left(x_{1} \wedge \cdots \wedge x_{n}, \bar{x}_{1} \wedge \cdots \wedge \bar{x}_{n}\right)_{A_{2}^{n} L_{2}\left(B_{\left.X^{\prime}, \mu\right)}\right)}^{1 / n}: x_{i} \in B_{X}\right\} \\
& =\sup \left\{\frac{1}{n!} \int_{B_{X^{\prime}}} \cdots \int_{B_{X^{\prime}}}\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right): x_{i} \in B_{X}\right\}^{1 / n} \\
& =n!^{-1 / n} \Gamma_{n}(X ; \mu)^{2} .
\end{aligned}
$$

Weaker, but more general, variants of Lemmas 2.1 and 2.2 are also useful. Moreover, they improve [2, (2.1, 2.5)].

Lemma 2.1'. Let $S \in \mathscr{L}(X, Y)$ and let $T \in \Pi_{2}(Y, Z)$ be dominated by $\mu \in W\left(B_{Y^{\prime}}\right)$. Then

$$
\Gamma_{n}(T S) \leqslant n!^{-1 / 2 n} \Gamma_{n}(S ; \mu) \pi_{2}(T)
$$

Proof. Applying Theorem 1.1 to $s=S x_{1} \wedge \cdots \wedge S x_{n}$ and taking the supremum over $x_{i} \in B_{X}$ we arrive at our assertion.

Lemma 2.2'. Let $A \in \mathscr{L}\left(X_{0}, X\right), S \in \Gamma_{2}^{*}(X, Y)$, and $B \in \mathscr{L}\left(Y, Y_{0}\right)$. If S is dominated by $\mu \in W\left(B_{X^{\prime}}\right)$ and $v \in W\left(B_{Y^{\prime}}\right)$, then

$$
\Gamma_{n}(B S A) \leqslant n!^{-1 / n} \Gamma_{n}\left(B^{\prime} ; v\right) \Gamma_{n}(A ; \mu) \gamma_{2}^{*}(S)
$$

Proof. We assume $S=S_{2} S_{1}$ with $S_{1} \in \Pi_{2}(X, H)$ and $S_{2}^{\prime} \in \Pi_{2}\left(Y^{\prime}, H^{\prime}\right)$ such that $\gamma_{2}^{*}(S)=\pi_{2}\left(S_{1}\right) \pi_{2}\left(S_{2}^{\prime}\right)$ (μ and v dominate S_{1} and S_{2}, respectively). Setting

$$
s=A x_{1}^{0} \wedge \cdots \wedge A x_{n}^{0} \quad \text { and } \quad t=B^{\prime} b_{1}^{0} \wedge \cdots \wedge B^{\prime} b_{n}^{0}
$$

we obtain

$$
\begin{aligned}
\mid \operatorname{det}(\langle & \left.\left\langle B S A x_{i}^{0}, b_{j}^{0}\right\rangle\right)_{i, j=1}^{n} \mid \\
= & \left|\operatorname{det}\left(\left\langle S_{1} A x_{i}^{0}, S_{2}^{\prime} B^{\prime} b_{j}^{0}\right\rangle\right)\right| \\
= & \left|\left(S_{1} A x_{1}^{0} \wedge \cdots \wedge S_{1} A x_{n}^{0}, S_{2}^{\prime} B^{\prime} b_{1}^{0} \wedge \cdots \wedge S_{2}^{\prime} B^{\prime} b_{n}^{0}\right)_{A_{2}^{n} H}\right| \\
\leqslant & \tau\left(S_{1} A x_{1}^{0} \wedge \cdots \wedge S_{1} A x_{n}^{0}\right) \tau\left(S_{2}^{\prime} B^{\prime} b_{1}^{0} \wedge \cdots \wedge S_{2}^{\prime} B^{\prime} b_{n}^{0}\right) \\
\leqslant & n!^{-1} \pi_{2}\left(S_{1}\right)^{n} \pi_{2}\left(S_{2}^{\prime}\right)^{n} \\
& \times\left(\int_{B_{X^{\prime}}} \cdots \int_{B_{X^{\prime}}}\left|\operatorname{det}\left(\left\langle A x_{i}^{0}, a_{j}\right\rangle\right)\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right)^{1 / 2} \\
& \times\left(\int_{B_{Y^{\prime \prime}}} \cdots \int_{B_{Y^{\prime \prime}}}\left|\operatorname{det}\left(\left\langle B^{\prime} b_{j}^{0}, y_{k}^{\prime \prime}\right\rangle\right)\right|^{2} d v\left(y_{1}^{\prime \prime}\right) \cdots d v\left(y_{n}^{\prime \prime}\right)\right)^{1 / 2}
\end{aligned}
$$

from Theorem 1.2. Passing to the supremum over $x_{i}^{0} \in B_{X_{0}}$ and $b_{j}^{0} \in B_{Y_{0}^{\prime}}$ yields the desired result.

Before we consider some examples we derive two basic properties of the modified Grothendieck numbers which are needed in the sequel.

Corollary 2.3. Let $S \in \mathscr{L}(X, Y)$ and $\mu \in W\left(B_{Y^{\prime}}\right)$. Then

$$
\Gamma_{n}(S ; \mu) \leqslant n!^{1 / 2 n}\|S\|
$$

Proof. Using Lemma 2.1 and [2] we obtain

$$
\Gamma_{n}(S ; \mu)=n!^{1 / 2 n} \Gamma_{n}(J S) \leqslant n!^{1 / 2 n}\|J S\| \leqslant n!^{1 / 2 n}\|S\| .
$$

Corollary 2.4. Let $Y \subseteq X$ be Banach spaces and let $v \in W\left(B_{Y^{\prime}}\right)$. Then there exists a measure $\mu \in W\left(B_{X^{\prime}}\right)$ such that

$$
\Gamma_{n}(Y ; v) \leqslant \Gamma_{n}(X ; \mu) \quad \text { for } \quad n=1,2, \ldots
$$

Proof. If $I: Y \rightarrow X$ and $J: Y \rightarrow L_{2}\left(B_{Y} ; v\right)$ are the canonical embeddings and if $\widetilde{J}: X \rightarrow L_{2}\left(B_{Y^{\prime}} ; v\right)$ is an extension of J with $\pi_{2}(\widetilde{J})=\pi_{2}(J)=1$ and the dominating measure $\mu \in W\left(B_{X^{\prime}}\right)$, then

$$
\begin{aligned}
\Gamma_{n}(Y ; v) & =n!^{1 / 2 n} \Gamma_{n}(J)=n!^{1 / 2 n} \Gamma_{n}(\tilde{J} I) \\
& \leqslant \Gamma_{n}(I ; \mu) \pi_{2}(\widetilde{J}) \leqslant \Gamma_{n}(X ; \mu)
\end{aligned}
$$

according to Lemmas 2.1 and 2.1^{\prime}.
Now we are in a position to treat some examples. For the first one we mention $\Gamma_{n}\left(l_{2}^{n}\right)=1$ according to [2].

Example 2.5. Let $\mu \in W\left(B_{l_{2}^{n}}\right)$ and $\left\{e_{i}\right\}$ be the standard basis of l_{2}^{n}. Then

$$
\begin{aligned}
& \left(\int_{B_{l_{2}^{\prime}}} \cdots \int_{B_{l 2}^{n}}\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right)^{1 / 2 n} \\
& \quad=\Gamma_{n}\left(l_{2}^{n} ; \mu\right) \leqslant\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} .
\end{aligned}
$$

In the case in which μ is the Haar measure on the sphere S_{n-1} or $\mu=1 / n \sum_{j=1}^{n} \delta_{e_{j}}$ equality holds.

Proof. By the volume and multiplication properties of the determinant it is easy to see that

$$
\sup \left\{\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)\right|: x_{i} \in B_{i_{2}^{n}}\right\}=\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)\right|
$$

such that

$$
\left(\int_{B_{i_{2}}} \cdots \int_{B_{n_{2}^{n}}}\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right)^{1 / 2 n}=\Gamma_{n}\left(l_{2}^{n} ; \mu\right) .
$$

On the other hand, by Lemma 2.1 and [2] we obtain

$$
\begin{aligned}
\Gamma_{n}\left(l_{2}^{n} ; \mu\right) & =n!^{1 / 2 n} \Gamma_{n}\left(J: l_{2}^{n} \rightarrow L_{2}\left(B_{l_{2}^{n}} ; \mu\right)\right) \\
& =n!^{1 / 2 n}\left(a_{1}(J) \cdots a_{n}(J)\right)^{1 / n},
\end{aligned}
$$

where $a_{k}(J)$ are the usual approximation numbers of J (see Section 3). With the help of $[11,(2.11 .24)]$ we continue to

$$
\begin{aligned}
\Gamma_{n}\left(l_{2}^{n} ; \mu\right) & \leqslant\left(\frac{n!}{n^{n}}\right)^{1 / 2 n}\left(a_{1}(J)^{2}+\cdots+a_{n}(J)^{2}\right)^{1 / 2} \leqslant\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} \pi_{2}(J) \\
& \leqslant\left(\frac{n!}{n^{n}}\right)^{1 / 2 n}
\end{aligned}
$$

Now let μ be the Haar measure on S_{n-1} or $\mu=1 / n \sum_{j=1}^{n} \delta_{e_{j}}$. In both cases the covariance operator $T_{\mu}: l_{2}^{n} \rightarrow l_{2}^{n}$ satisfies

$$
\left\langle e_{i}, T_{\mu} e_{j}\right\rangle=\int_{B_{/ 2}^{n}} \alpha_{i} \alpha_{j} d \mu\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)=1 / n \delta_{i j}
$$

Hence $T_{\mu}=1 / n I$. Applying Lemma 2.2 yields

$$
\Gamma_{n}\left(l_{2}^{n} ; \mu\right)=(n!)^{1 / 2 n} \Gamma_{n}(1 / n I)^{1 / 2}=n^{-1 / 2}(n!)^{1 / 2 n}
$$

For later use we construct measures $\mu \in W\left(B_{l_{2}^{n}}\right)$ with

$$
\int_{B_{l_{2}^{n}}} \cdots \int_{B \eta_{2}}\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)=\frac{n!}{n^{n}}
$$

in a more general way using ellipsoids of maximal volume.
Let E be an n-dimensional Banach space. We will say that $u \in \mathscr{L}\left(l_{2}^{n}, E\right)$ is a John-map, if $\|u\|=1$ and $\pi_{2}\left(u^{-1}\right)=n^{1 / 2}$. Note that the image $u\left(B_{l_{2}^{n}}\right)$ is the unique ellipsoid of maximal volume which is contained in B_{E}.

Example 2.6. Let E be an n-dimensional Banach space and let $u \in \mathscr{L}\left(l_{2}^{n}, E\right)$ be a John-map. Furthermore, let u^{-1} be dominated by $\mu \in W\left(B_{E^{\prime}}\right)$ and let $v \in W\left(B_{l_{2}^{n}}\right)$ be the image measure of μ with respect to $u^{\prime} \in \mathscr{L}\left(E^{\prime}, l_{2}^{n}\right)$. Then

$$
\begin{aligned}
& \left(\int_{B_{l_{2}}} \cdots \int_{B_{2}}\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d v\left(a_{1}\right) \cdots d v\left(a_{n}\right)\right)^{1 / 2 n} \\
& \quad=\Gamma_{n}(u ; \mu)=\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} .
\end{aligned}
$$

Proof. The left-hand equality follows from

$$
\begin{aligned}
\int_{B_{l_{2}^{\prime}}} & \cdots \int_{B_{l_{2}^{\prime}}}\left|\operatorname{det}\left(\left\langle e_{i}, a_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d v\left(a_{1}\right) \cdots d v\left(a_{n}\right) \\
& =\int_{B_{E^{\prime}}} \cdots \int_{B_{E^{\prime}}}\left|\operatorname{det}\left(\left\langle e_{i}, u^{\prime} b_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(b_{1}\right) \cdots d \mu\left(b_{n}\right) \\
& =\sup \left\{\int_{B_{E^{\prime}}} \cdots \int_{B_{E^{\prime}}}\left|\operatorname{det}\left(\left\langle x_{i}, u^{\prime} b_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{2} d \mu\left(b_{1}\right) \cdots d \mu\left(b_{n}\right): x_{i} \in B_{l_{2}^{n}}\right\},
\end{aligned}
$$

using the same argument as that given in the proof of Example 2.5. We consider the right-hand equality. From the construction of the John-map it is clear that $J: E \rightarrow L_{2}\left(B_{E^{*}} ; \mu\right)$ considered as a map on the image $J(E)$ and $n^{-1 / 2} u^{-1}$ may be identified. Hence

$$
\Gamma_{n}(u ; \mu)=n!^{1 / 2 n} \Gamma_{n}\left(n^{-1 / 2} u^{-1} u\right)=\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} \Gamma_{n}\left(l_{2}^{n}\right)=\left(\frac{n!}{n^{n}}\right)^{1 / 2 n}
$$

according to Lemma 2.1.
Another example we want to discuss is
Example 2.7. Let $\mu \in W\left(B_{l_{x}}\right)$ and let $\left\{e_{i}\right\}$ be the standard basis of l_{1}. Then

$$
\begin{aligned}
& \sup _{i_{1}<\cdots<i_{n}}\left\{\int_{B_{l_{\infty}}} \cdots \int_{B_{l_{\infty}}}\left|\operatorname{det}\left(\left\langle e_{i_{k}}, a_{i}\right\rangle\right)_{k, l=1}^{n}\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right\}^{1 / 2 n} \\
& \quad=\Gamma_{n}\left(l_{1} ; \mu\right) \leqslant n!^{1 / 2 n} .
\end{aligned}
$$

If μ is induced by the embedding $J:\left[\{-1,+1\}^{\mathbb{N}}, v\right] \rightarrow B_{l_{\infty}}$, where v is the normalized Haar measure on the product group $\{-1,+1\}^{\mathbb{N}}$, and if $\varepsilon_{i j}$ is a family of independent random variables on $[\Omega, \mathscr{F}, P]$ with $P\left(\varepsilon_{i j}=1\right)=$ $P\left(\varepsilon_{i j}=-1\right)=\frac{1}{2}$ then

$$
\left(\int_{\Omega}\left|\operatorname{det}\left(\varepsilon_{i j}\right)_{i, j=1}^{n}\right|^{2} d P(\omega)\right)^{1 / 2 n}=\Gamma_{n}\left(l_{1} ; v\right)=n!^{1 / 2 n}
$$

Proof. Let $\mu \in W\left(B_{l_{\infty}}\right)$ be arbitrary. Defining $t: l_{1} \times \cdots \times l_{1} \rightarrow \mathbb{R}$ by

$$
t\left(x_{1}, \ldots, x_{n}\right):=\left(\int_{B_{l_{\infty}}} \ldots \int_{B_{l_{\infty}}}\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right)^{1 / 2}
$$

we obtain a map which is continuous and convex in each component. Therefore

$$
\Gamma_{n}\left(l_{1} ; \mu\right)=\sup \left\{t\left(e_{i_{1}}, \ldots, e_{i_{n}}\right)^{1 / n}: i_{1}<\cdots<i_{n}\right\} .
$$

The estimate $\Gamma_{n}\left(l_{1} ; \mu\right) \leqslant n!^{1 / 2 n}$ follows from Corollary 2.3. Now we assume μ to be the image of the Haar measure v on $\{-1,+1\}^{\mathbb{N}}$. The continuity of J and the regularity of ν imply the regularity of μ. The symmetry of μ yields $\Gamma_{n}\left(l_{1} ; \mu\right)=t\left(e_{1}, \ldots, e_{n}\right)^{1 / n}$. Hence

$$
\begin{aligned}
\Gamma_{n}\left(l_{1} ; \mu\right) & =\left(\int_{(-1,1)^{N}} \cdots \int_{(-1,1)^{N}}\left|\operatorname{det}\left(\left\langle e_{i}, J b_{j}\right\rangle\right)\right|^{2} d v\left(b_{1}\right) \cdots d v\left(b_{n}\right)\right)^{1 / 2 n} \\
& =\left(\int_{\Omega}\left|\operatorname{det}\left(\varepsilon_{i j}\right)_{i, j=1}^{n}\right|^{2} d P(\omega)\right)^{1 / 2 n}
\end{aligned}
$$

To compute $\Gamma_{n}\left(l_{1} ; \mu\right)$ we consider the covariance operator $T_{\mu}: l_{1} \rightarrow l_{\infty}$. It is not hard to check that

$$
\int_{B_{i_{\infty}}}\left\langle e_{i}, a\right\rangle\left\langle e_{j}, a\right\rangle d \mu(a)=\delta_{i j} .
$$

Consequently $T_{\mu}=I: l_{1} \rightarrow l_{\infty}$ such that

$$
\Gamma_{n}\left(l_{1} ; \mu\right)=n!^{1 / 2 n} \Gamma_{n}(I)^{1 / 2}=n!^{1 / 2 n}
$$

according to Lemma 2.2 and

$$
\Gamma_{n}\left(I: l_{1} \rightarrow l_{\infty}\right)=\sup \left\{\left|\operatorname{det}\left(\left\langle I e_{i_{k}}, e_{j_{l}}\right\rangle\right)_{k, l=1}^{n}\right|^{1 / n}: i_{k}, j_{l} \in \mathbb{N}\right\}=1
$$

(again use convexity and continuity).
Corollaries 2.3, 2.4 and Example 2.7 yield at once
Corollary 2.8. Let X be a Banach space which contains l_{1} isometrically. Then there exists a measure $\mu \in W\left(B_{X^{\prime}}\right)$ such that

$$
\Gamma_{n}(X ; \mu)=n!^{1 / 2 n} \quad \text { for } \quad n=1,2, \ldots
$$

In the next section we see that the above property is typical for Banach spaces containing an isomorphic copy of l_{1}.

3. Relations to the Geometry of Banach Spaces

We will show that the asymptotic behaviour of the modified Grothendieck numbers $\Gamma_{n}(X ; \mu)$ characterizes some classes of Banach spaces. As a
basic tool we make use of the approximation numbers, which are defined as

$$
a_{n}(S):=\inf \{\|S-L\|: L \in \mathscr{L}(X, Y), \operatorname{rank}(L)<n\}
$$

for an operator $S \in \mathscr{L}(X, Y)$. In the following it is convenient to set

$$
\mathscr{L}_{p, q}^{a}:=\left\{S \in \mathscr{L}(X, Y):\left\{n^{1 / p-1 / q} a_{n}(S)\right\} \in l_{q}\right\}
$$

for $0<p<\infty$ and $0<q \leqslant \infty$.
With the help of the following lemma we will translate known results about approximation numbers of absolutely 2 -summing operators into the language of Grothendieck numbers.

Lemma 3.1. Let $S \in \mathscr{L}(X, Y), \mu \in W\left(B_{Y^{\prime}}\right)$, and $J: Y \rightarrow L_{2}\left(B_{Y^{\prime}} ; \mu\right)$ be the canonical embedding. Then

$$
a_{1}(J S) \cdots a_{n}(J S) \leqslant n!^{-1 / 2} \Gamma_{n}(S ; \mu)^{n} \leqslant c^{n} \dot{a}_{1}(J S) \cdots \dot{a}_{n}(J S)
$$

where $c>0$ is an absolute constant and $\left\{\dot{a}_{k}(J S)\right\}$ stands for the doubled sequence $\left\{a_{1}(J S), a_{1}(J S), a_{2}(J S), a_{2}(J S), \ldots\right\}$.

Proof. Since

$$
a_{1}(J S) \cdots a_{n}(J S) \leqslant \Gamma_{n}(J S)^{n} \leqslant c^{n} \dot{a}_{1}(J S) \cdots \dot{a}_{n}(J S)
$$

according to $[3,(2.2)]$ our assertion follows from Lemma 2.1.
The left-hand side of Lemma 3.1 can be formulated more generally.

Lemma 3.1'. Let $S \in \mathscr{L}(X, Y)$ and let $T \in \Pi_{2}(Y, Z)$ be dominated by $\mu \in W\left(B_{Y^{\prime}}\right)$. Then for all $n=1,2, \ldots$

$$
\left(a_{1}(T S) \cdots a_{n}(T S)\right)^{1 / n} \leqslant n!^{-1 / 2 n} \Gamma_{n}(S ; \mu) \pi_{2}(T)
$$

Proof. Considering the factorization $T=B J$, where $J: Y \rightarrow L_{2}\left(B_{Y^{\prime}} ; \mu\right)$ is as usual and where $\pi_{2}(T)=\|B\|$, we obtain

$$
\begin{aligned}
\left(a_{1}(T S) \cdots a_{n}(T S)\right)^{1 / n} & \leqslant\left(a_{1}(J S) \cdots a_{n}(J S)\right)^{1 / n}\|B\| \\
& \leqslant n!^{-1 / 2 n} \Gamma_{n}(S ; \mu) \pi_{2}(T)
\end{aligned}
$$

from Lemma 3.1.
Let $0 \leqslant \alpha \leqslant \frac{1}{2}$. Then all Banach spaces X such that

$$
\sup n^{-x} \Gamma_{n}(X)<\infty
$$

form a well-known class of Banach spaces. For $\alpha=0$ we obtain the weak Hilbert spaces; $\alpha=\frac{1}{2}$ yields the class of all Banach spaces. An L_{p}-space belongs to the above class whenever $\alpha=\left|1 / p-\frac{1}{2}\right|$ (see $\left.[2,3,7,12,15]\right)$.

With respect to the above classes the different Grothendieck numbers possess the same behaviour.

Theorem 3.2. Let X be a Banach space and $0 \leqslant \alpha \leqslant \frac{1}{2}$. Then $\sup _{n} n^{-\alpha} \Gamma_{n}(X)<\infty$ if and only if

$$
\sup _{n} n^{-\alpha} \Gamma_{n}(X ; \mu)<\infty \quad \text { for all } \quad \mu \in W\left(B_{X^{\prime}}\right) .
$$

Proof. Since $\Gamma_{n}(X ; \mu) \leqslant \Gamma_{n}(X)$ we show one direction only. If Y is an arbitrary Banach space and $S \in \Pi_{2}(X, Y)$, then we obtain $\left\{a_{n}(S)\right\}_{n=1}^{\infty} \in l_{p, \infty}$ for $1 / p=\frac{1}{2}-\alpha$ from Lemma 3.1'. Hence $\sup _{n} n^{-\alpha} \Gamma_{n}(X)<\infty$ according to [7, (4.5)] or $[14,(2.2)]$.

The asymptotic behaviours of $\Gamma_{n}(X ; \mu)$ and $\Gamma_{n}(X)$ are not always the same. For example, $\Gamma_{n}(X) \geqslant 1$ whenever $\operatorname{dim}(X) \geqslant n$ or in [13] it is shown that

$$
\Gamma_{n}(X) \geqslant c n^{1 / 2} \quad \text { if and only if } \quad X \text { is not } K \text {-convex. }
$$

In contrast to this we have the following two results.

Theorem 3.3. A Banach space X is isomorphic to a Hilbert space if and only if

$$
\sum_{n} \Gamma_{n}(X ; \mu)^{2} / n<\infty \quad \text { for all } \quad \mu \in W\left(B_{X^{\prime}}\right)
$$

and

$$
\begin{equation*}
\sum_{n} \Gamma_{n}\left(X^{\prime} ; v\right)^{2} / n<\infty \quad \text { for all } \quad v \in W\left(B_{X^{\prime}}\right) \tag{**}
\end{equation*}
$$

Proof. From Lemma $3.1\left(S=I_{X}\right)$ and from the factorization argument given in the proof of Theorem 3.2 it is clear that (*) is equivalent to

$$
\Pi_{2}(X, Y) \subseteq \mathscr{L}_{2,2}^{a}(X, Y) \quad \text { and } \quad \Pi_{2}\left(X^{\prime}, Y\right) \subseteq \mathscr{L}_{2,2}^{a}\left(X^{\prime}, Y\right) \quad(* *)
$$

for all Banach spaces Y. Hence (*) is fulfilled whenever X is isomorphic to a Hilbert space. Let us treat the converse. The second inclusion of ($* *$) implies $\left\{a_{n}(S)\right\} \in l_{2}$ for all $S: Z \rightarrow X$ with $S^{\prime} \in \Pi_{2}$. Hence the definition of Γ_{2}^{*} and the multiplicity of the approximation numbers imply $N(X, X) \subseteq$ $\Gamma_{2}^{*}(X, X) \subseteq \mathscr{L}_{1,1}^{a}(X, X)$. Therefore X is a Hilbert space according to [5, Theorem 3.15].

Problem. Does " $\Pi_{2}(X, Y) \subseteq \mathscr{L}_{2,2}^{a}(X, Y)$ for all Banach spaces Y " imply that X is a Hilbert space? From Theorem 3.2 we know that X must be a weak Hilbert space.

Theorem 3.4. For a Banach space X the following are equivalent.
(1) X contains an isomorphic copy of l_{1}.
(2) There exist $\mu \in W\left(B_{X^{\prime}}\right)$ and $c>0$ such that

$$
\Gamma_{n}(X ; \mu) \geqslant c n^{1 / 2} \quad \text { for } \quad n=1,2, \ldots .
$$

(3) There exist $\mu \in W\left(B_{X^{\prime}}\right)$ and $\alpha, \beta>0$ such that for all $n=1,2, \ldots$ there are $x_{1}, \ldots, x_{n} \in B_{X}$ with

$$
\mu \times \cdots \times \mu\left\{\left(a_{1}, \ldots, a_{n}\right):\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)\right|^{1 / n} \geqslant \alpha n^{1 / 2}\right\} \geqslant \beta^{n} .
$$

Proof. (1) \Leftrightarrow (2). A result of Pełczynski and Ovsepian [8, Proposition 3] says that a Banach space X contains l_{1} if and only if there exists a non-compact operator $S: \quad X \rightarrow l_{2} \in \Pi_{2}$. Hence Lemma 3.1 yields the equivalence. $((1) \Rightarrow(2)$ follows directly from Example 2.7 and Corollary 2.4 in a more constructive way.)
$(2) \Rightarrow(3)$. We choose $x_{1}, \ldots, x_{n} \in B_{X}$ with

$$
\int_{B_{x^{\prime}}} \cdots \int_{B_{x^{\prime}}}\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right) \geqslant(c / 2)^{2 n} n^{n} .
$$

Defining $\alpha:=c / 4$ and

$$
p:=\mu \times \cdots \times \mu\left\{\left(a_{1}, \ldots, a_{n}\right):\left|\operatorname{det}\left(\left\langle x_{i}, a_{j}\right\rangle\right)\right|^{1 / n} \geqslant \alpha n^{1 / 2}\right\}
$$

we conclude

$$
(c / 2)^{2 n} n^{n} \leqslant(1-p) \alpha^{2 n} n^{n}+p n^{n} \leqslant\left((c / 4)^{2 n}+p\right) n^{n}
$$

Hence $p \geqslant(c / 2)^{2 n}-(c / 4)^{2 n} \geqslant(c / 4)^{2 n}$ and $\beta:=(c / 4)^{2}$ satisfies (3).
(3) \Rightarrow (2). This is clear since $\Gamma_{n}(X ; \mu)^{2 n} \geqslant \alpha^{2 n} \beta^{n} n^{n}$.

It is known that an operator $S \in \mathscr{L}(X, Y)$ is compact if and only if the sequence of its Gelfand numbers

$$
c_{n}(S)=\inf \left\{\left\|\left.S\right|_{E}\right\|: E \subseteq X, \operatorname{codim}(E)<n\right\}
$$

tends to zero. The same holds for the Kolmogorov numbers

$$
d_{n}(S):=\inf \left\{\left\|Q_{F} S\right\|: F \subseteq Y, \operatorname{dim}(F)<n, Q_{F}: Y \rightarrow Y / F \text { canonical }\right\} .
$$

Now the result of Ovsepian and Pełczynski [8] can be formulated as follows.

A Banach space X does not contain l_{1} if and only if $c_{n}(S) \xrightarrow{\longrightarrow} 0$ $\left(d_{n}(S) \xrightarrow[n]{ } 0\right)$ for all $S \in \Pi_{2}(X, Y)$ and all Banach spaces Y. Moreover, it is clear that $c_{n}(S) \xrightarrow[n]{\longrightarrow} 0$ (or $d_{n}(S) \xrightarrow[n]{ } 0$) for all $S \in \Gamma_{2}^{*}(X, Y)$ if X or Y^{\prime} does not contain l_{1}.

We will replace the Gelfand (or Kolmogorov) numbers by the Grothendieck numbers. In general we have

$$
\left(c_{1}(S) \cdots c_{n}(S)\right)^{1 / n} \leqslant \Gamma_{n}(S) \quad \text { and } \quad\left(d_{1}(S) \cdots d_{n}(S)\right)^{1 / n} \leqslant \Gamma_{n}(S)
$$

for all $S \in \mathscr{L}(X, Y)$ and all Banach spaces X, Y (this is a result of Carl; cf. [3]). The converse does not hold in this form since, for example,

$$
c_{n}\left(I: l_{1}^{m} \rightarrow l_{\infty}^{m}\right) \leqslant 6 \frac{m^{1 / 2}}{n} \quad \text { and } \quad d_{n}\left(I: l_{1}^{m} \rightarrow l_{\infty}^{m}\right) \leqslant 6 \frac{m^{1 / 2}}{n}
$$

for $n=1, \ldots, m(c f .[10,(11.11 .11)])$ whereas $\Gamma_{n}\left(I: l_{1}^{m} \rightarrow l_{\infty}^{m}\right)=1$.

Theorem 3.5. For a Banach space X the following are equivalent.
(1) X does not contain an isomorphic copy of l_{1}.
(2) For all Banach spaces Y and for all $S \in \Pi_{2}(X, Y)$ we have

$$
\Gamma_{n}(S) \longrightarrow{ }_{n} 0
$$

(3) For all Banach spaces Y, for all $S \in \Pi_{2}(X, Y)$, and for all sequences $\left\{x_{n}\right\} \subseteq B_{X}$ we have

$$
\left(\varepsilon\left(S x_{1} \wedge \cdots \wedge S x_{n}\right)\right)^{1 / n} \longrightarrow{ }_{n} 0
$$

Proof. (1) \Rightarrow (2). If X does not contain l_{1} then $n^{-1 / 2} \Gamma_{n}(X ; \mu) \xrightarrow[n]{\longrightarrow} 0$ for all $\mu \in W\left(B_{X^{\prime}}\right)$ according to Lemma 3.1 and [8]. Hence (2) follows from Lemma 2.1'.
(2) \Rightarrow (3). Trivial.
(3) \Rightarrow (1). We assume that X contains a copy of l_{1}, say $Y \subseteq X$. If $\left\{y_{n}\right\}$ corresponds to the standard basis of l_{1}, the operator $S: Y \rightarrow l_{2}$ defined by $S y_{i}:=e_{i}$ is absolutely 2 -summing (cf. [10, (22.4.4)]). It is known that there exists an extension $T: X \rightarrow l_{2} \in \Pi_{2}$. Hence

$$
\varepsilon\left(T y_{1} \wedge \cdots \wedge T y_{n}\right)=\varepsilon\left(e_{1} \wedge \cdots \wedge e_{n}\right)=1 \quad \text { for all } n=1,2, \ldots
$$

which is a contradiction to (3).

Furthermore, from Lemmas 2.2', 3.1 and [8] we obtain
Theorem 3.6. Let X and Y be a Banach spaces such that at least one of the spaces X and Y^{\prime} does not contain an isomorphic copy of l_{1}. Then

$$
\Gamma_{n}(S) \longrightarrow{ }_{n} 0 \quad \text { for all } \quad S \in \Gamma_{2}^{*}(X, Y) \text {. }
$$

Remark. The converse of Theorem 3.6 is not true. If we set $X=Y=l_{1}$ all operators $S \in \Gamma_{2}^{*}(X, Y)$ factor as $S=B A$ with $A \in \mathscr{L}\left(l_{1}, l_{2}\right)$ and $B \in \mathscr{L}\left(l_{2}, l_{1}\right) . B$ is known to be automatically compact (cf. [6, (I.2.c.3)]) such that $\Gamma_{n}(B) \xrightarrow{\longrightarrow} 0$ according to [3, (2.2)]. Hence $\Gamma_{n}(S) \leqslant \Gamma_{n}(B)\|A\|$ implies $\Gamma_{n}(S) \xrightarrow{n} 0$.

4. Cubical Volume Ratio

We demonstrate that the Grothendieck numbers are useful for considering the cubical volume ratio of convex and symmetric bodies in \mathbb{R}^{n}. We reprove a result of Pełczynski and Szarek [9, Corollary 2.2] and use the estimates, obtained for this purpose, to sharpen the relation between the Grothendieck numbers and the volume ratio using ellipsoids of maximal and minimal volume.

As in [9] we also use in Proposition 4.2 the Gauss-inequality. Nevertheless our approach seems to be somewhat different and yields further consequences.

From now on all Banach spaces are assumed to be real. The volume of a body $C \subseteq E$, where E is a finite-dimensional Banach space, is taken with respect to a fixed non-trivial Haar-measure and denoted by $|C|$. For simplicity we take the standard Lebesgue measure in the case $E=l_{2}^{n}$ or $E=l_{\infty}^{n}$.

The cubical volume ratio of the unit ball B_{E} of an n-dimensional Banach space E is defined as

$$
a(E):=\sup \left\{\frac{\left|v\left(B_{E}\right)\right|}{\left|B_{b_{\infty}}^{n}\right|}:\left\|v: E \rightarrow l_{\infty}^{n}\right\| \leqslant 1\right\}^{1 / n} .
$$

By an ellipsoid D in E we mean the image of $B_{l_{2}^{n}}$ under some $u \in \mathscr{L}\left(l_{2}^{n}, E\right)$, that is, $D=u\left(B_{l_{2}^{n}}\right) . D_{\max }^{E} \subseteq B_{E}$ is the ellipsoid of maximal volume which lies in B_{E} and $D_{\min }^{E} \supseteq B_{E}$ the ellipsoid of minimal volume which contains B_{E}.

With the above notation we define the usual volume ratio of E as

$$
\operatorname{vr}(E):=\left(\frac{\left|B_{E}\right|}{\left|D_{\max }^{E}\right|}\right)^{1 / n}
$$

The following easy observation is the reason for the use of Grothendieck numbers to compare the cubical volume ratio with the usual volume ratio.

Lemma 4.1. Let E be n-dimensional. Then

$$
a(E)=a\left(l_{2}^{n}\right) \operatorname{vr}(E) \Gamma_{n}(u)
$$

where $u \in \mathscr{L}\left(l_{2}^{n}, E\right)$ is a John-map $\left(\|u\|=1, \pi_{2}\left(u^{-1}\right)=n^{1 / 2}\right)$.
Proof. From the definition of $a(E)$ we obtain

$$
\begin{aligned}
a(E) & =\sup \left\{\frac{\left|B_{l_{2}^{n}}\right|}{\left|B_{l_{\infty}^{n}}\right|} \frac{\left|B_{E}\right|}{\left|u\left(B_{l_{2}^{n}}\right)\right|} \frac{\left|v u\left(B_{l_{2}^{n}}\right)\right|}{\left|B_{l_{2}^{n}}\right|}:\left\|v: E \rightarrow l_{\infty}^{n}\right\| \leqslant 1\right\}^{1 / n} \\
& =a\left(l_{2}^{n}\right) \operatorname{vr}(E) \sup \left\{\frac{\left|v u\left(B_{l_{2}^{n}}\right)\right|}{\left|B_{l_{2}^{n}}\right|}:\left\|v: E \rightarrow l_{\infty}^{n}\right\| \leqslant 1\right\}^{1 / n}
\end{aligned}
$$

Using $\left|v u\left(B_{l_{2}^{n}}\right)\right|=\Gamma_{n}\left(v u: l_{2}^{n} \rightarrow l_{2}^{n}\right)^{n}\left|B_{l_{2}^{n}}\right|$ and $\Gamma_{n}\left(v u: l_{2}^{n} \rightarrow l_{2}^{n}\right)=\Gamma_{n}\left(v u: l_{2}^{n} \rightarrow l_{\infty}^{n}\right)$ from [2] we continue to

$$
\begin{aligned}
a(E) & =a\left(l_{2}^{n}\right) \operatorname{vr}(E) \sup \left\{\Gamma_{n}(v u):\left\|v: E \rightarrow l_{\infty}^{n}\right\| \leqslant 1\right\} \\
& =a\left(l_{2}^{n}\right) \operatorname{vr}(E) \Gamma_{n}(u)
\end{aligned}
$$

since $\Gamma_{n}(S)=\sup \left\{\Gamma_{n}(v S):\left\|v: Y \rightarrow l_{\infty}^{n}\right\| \leqslant 1\right\}$ for $S \in \mathscr{L}(X, Y)$ in general.

Now we estimate $\Gamma_{n}(u)$ from below and from above. The estimate $\Gamma_{n}(u) \leqslant 1$ follows from [2] and is clearly the best possible.

Proposition 4.2. Let E be n-dimensional and let $u \in \mathscr{L}\left(l_{2}^{n}, E\right)$ be a Johnmap. Then for $N=n(n+1) / 2$

$$
\left(\frac{N}{n}\right)^{1 / 2}\left(\frac{n!}{N(N-1) \cdots(N-n+1)}\right)^{1 / 2 n} \leqslant \Gamma_{n}(u) \leqslant 1
$$

Proof. From [16, Theorem 15.5] we know that the inverse u^{-1} of a John-map can be dominated by a $\mu \in W\left(B_{E^{\prime}}\right)$ with $\operatorname{card}(\operatorname{supp}(\mu))=N$. Setting $\mu=\sum_{j=1}^{N} \lambda_{j} \delta_{b_{j}}$ from Example 2.6 we obtain

$$
\begin{aligned}
\left(\frac{n!}{n^{n}}\right)^{1 / 2 n} & =\Gamma_{n}(u ; \mu) \\
& =\sup _{f_{i} \in B_{L_{2}^{\prime}}}\left\{\int_{B_{E^{\prime}}} \cdots \int_{B_{E^{\prime}}}\left|\operatorname{det}\left(\left\langle u f_{i}, a_{j}\right\rangle\right)\right|^{2} d \mu\left(a_{1}\right) \cdots d \mu\left(a_{n}\right)\right\}^{1 / 2 n} \\
& \leqslant \Gamma_{n}(u)\left(n!\sum_{j_{1}<\cdots<j_{n}} \lambda_{j_{1}} \cdots \hat{\lambda}_{j_{n}}\right)^{1 / 2 n} .
\end{aligned}
$$

We estimate the second factor from above by $\left((N \cdots(N-n+1)) / N^{n}\right)^{1 / 2 n}$ according to the Gauss-inequality [1, p. 11]. Hence the lower estimate of $\Gamma_{n}(u)$ follows.

Directly from Lemma 4.1 and Proposition 4.2 we obtain

Corollary 4.3 [9, Corollary 2.2]. Let E be n-dimensional. Then

$$
a(E) \leqslant a\left(l_{2}^{n}\right) \operatorname{vr}(E) \leqslant\left(\frac{n}{N}\right)^{1 / 2}\left(\frac{N \cdots(N-n+1)}{n!}\right)^{1 / 2 n} a(E)
$$

where $N=n(n+1) / 2$.
We can also improve [3, Theorem 1.1].

Corollary 4.4. Let X be a Banach space and let $N=n(n+1) / 2$. Then

$$
\Gamma_{n}(X) \leqslant \sup \left\{\frac{\left|D_{\min }^{E}\right|}{\left|D_{\max }^{E}\right|}\right\}^{1 / n} \leqslant \frac{n}{N}\left(\frac{N \cdots(N-n+1)}{n!}\right)^{1 / n} \Gamma_{n}(X)
$$

where the supremum is taken over all $E \subseteq X$ with $\operatorname{dim}(E)=n$.
Proof. The proof is exactly the same as that in [3]. We have to replace the estimate $\Gamma_{n}(u) \geqslant 1 / e$ by Proposition 4.2.

Acknowledgments

I thank Professors A. Pietsch and M. Junge for helpful hints during the preparation of this paper.

References

[^0]2. S. Geiss, Grothendieck numbers of linear and continuous operators on Banach spaces, Math. Nachr. 148 (1990), 65-79.
3. S. Geiss, Grothendieck numbers and volume ratios of operators on Banach spaces, Forum Math. 2 (1990), 323-340.
4. J. R. Holub, Tensor product mappings, Math. Ann. 188 (1970), 1-12; Proc. Amer. Math. Soc. 42 (1974), 437-441.
5. W. B. Johnson, H. Konig, B. Maurey, and J. R. Retherford, Eigenvalues of p-summing and l_{p}-type operators in Banach spaces, J. Funct. Anal. 32 (1979), 353-380.
6. J. Lindenstrauss and L. Tzafrirı, "Classical Banach Spaces I/II," Springer-Verlag, Berlin/Heidelberg/New York, 1977/1979.
7. V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1988), 67-110.
8. R. I. Ovsepian and A. Peeczynski, The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L^{2}, Sem. Maurey-Schwartz (1973-1974), Exposé 20.
9. A. Pelczynsi and S. J. Szarek, On parallelepipeds of minimal voume containing a convex symmetric body in \mathbb{R}^{n}, Proc. Cambridge Philos. Soc. 109 (1991), 125-148.
10. A. Pietsch, "Operator Ideals," North-Holland, Amsterdam, 1980.
11. A. Pietsch, "Eigenvalues and s-Numbers," Cambridge Univ. Press, Cambridge, 1987.
12. A. Pietsch, Eigenvalue distributions and geometry of Banach spaces, Math. Nachr. 150 (1991), 41-81.
13. A. Pietsch, Eigenvalue criteria for the B-convexity of Banach spaces, J. London Math. Soc. (2) 41, No. 2 (1990), 310-322.
14. A. Pietsch, Approximation numbers of nuclear operators and geometry of Banach spaces, Arch. Math. 57 (1991), 155-168.
15. G. Pisier, Weak Hilbert spaces, Proc. London Math. Soc. (3) 56 (1988), 547-579.
16. N. Tomczak-Jaegermann, "Banach-Mazur Distances and Finite Dimensional Operator Ideals," Pitman, London, 1988.

[^0]: 1. E. Beckenbach and R. Bellman, "Inequalities," Springer-Verlag, Berlin/Heidelberg/ New York, 1961.
